Home
Class 12
MATHS
For any non-zero vectors vec(a)andvec(b)...

For any non-zero vectors `vec(a)andvec(b)vec(a)xxvec(b)` is

A

cross product of `vec(a)andvec(b)`

B

`absvec(a)absvec(b)sintheta`

C

`absvec(a)absvec(b)sinthetahat(n)`

D

`-(vec(b)xxvec(a)).vec(a)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( IV. Choose the incorrect statement : )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS )|10 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( II. Fill in the blanks : )|15 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

For any non-zero vectors vec(a),vec(b)andvec(c),(vec(a)xxvec(b)).vec(c) is

If vec(a)andvec(b) are two unit vectors, then the vectors (vec(a)+vec(b))xx(vec(a)xxvec(b)) is parallel to the vector

For any three vectors vec(a),vec(b)andvec(c),(vec(a)+vec(b)).(vec(b)+vec(c))xx(vec(c)+vec(a)) is

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)" Let "P_(1)andP_(2) be the planes determined by the pairs of vectors, vec(a),vec(b)andvec(c),vec(d) respectively. Then the angle between P_(1)andP_(2) is

If for two vectors vec(A) and vec(B), vec(A) xx vec(B) = 0 then the vectors are :

If for two vectors vec(A) and vec(B), vec(A) xx vec(B) = 0 then the vectors are :

If vec(a)andvec(b) are unit vectors such that [vec(a),vec(b),vec(a)xxvec(b)]=(pi)/(4)," then the angle between "vec(a)andvec(b)" is "

If vec a and vec b are two non -zero vectors, then (vec a + vec b) .(vec a - vec b) is equal to

Resultant of three non-coplanar non-zero vectors vec a , vec b and vec c