Home
Class 12
MATHS
For any non-zero vectors vec(a),vec(b)an...

For any non-zero vectors `vec(a),vec(b)andvec(c),(vec(a)xxvec(b)).vec(c)` is

A

`vec(a).(vec(b)xxvec(c))`

B

`(vec(b)xxvec(c)).vec(c)`

C

`(vec(b)xxvec(c)).vec(a)`

D

`(vec(c)xxvec(a)).vec(c)`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( IV. Choose the incorrect statement : )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS )|10 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( II. Fill in the blanks : )|15 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

For any non-zero vectors vec(a)andvec(b)vec(a)xxvec(b) is

For any three vectors vec(a),vec(b)andvec(c),(vec(a)+vec(b)).(vec(b)+vec(c))xx(vec(c)+vec(a)) is

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

If vec(a),vec(b),vec(c) are the non-coplanar vectors, then (vec(a).vec(b)xxvec(c))/(vec(c)xxvec(a).vec(b))+(vec(b).vec(a)xxvec(c))/(vec(c).vec(a)xxvec(b))= ……………

Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)" Let "P_(1)andP_(2) be the planes determined by the pairs of vectors, vec(a),vec(b)andvec(c),vec(d) respectively. Then the angle between P_(1)andP_(2) is

If vec(a)andvec(b) are two unit vectors, then the vectors (vec(a)+vec(b))xx(vec(a)xxvec(b)) is parallel to the vector

If vec(a),vec(b),vec(c) are coplanar vectors, show that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]