Home
Class 12
MATHS
If bar(PR)=2hat(i)+hat(j)+hat(k),bar(QS)...

If `bar(PR)=2hat(i)+hat(j)+hat(k),bar(QS)=hat(i)+3hat(j)+2hat(k),` then the area of the quadrilateral PQRS is

A

`(5sqrt(3))/(2)`

B

`(1)/(2)|bar(PR)xxbar(QS)|`

C

`(1)/(2)(bar(PR)xxbar(QS))`

D

`(1)/(2)|{:(hat(i),hat(j),hat(k)),(2,1,1),(-1,3,2):}|`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS )|10 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 3 MARKS )|10 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( III. Choose the odd man out : )|5 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

For vec(a)=hat(i)+hat(j)-2hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=hat(i)-2hat(j)+2hat(k) , then find the unit vector parallal to vec(a)+vec(b)+vec(c) is ...................... .

Let alpha in R and the three vectors a=alpha hat(i) + hat(j) +3hat(k) , b=2hat(i) +hat(j) -alpha hat(k) " and " c= alpha hat(i) -2hat(j) +3hat(k) . Then the set S={alpha: a,b " and c are coplanar"}

vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=-hat(i)+2hat(j)-4hat(k),vec(c)=hat(i)+hat(j)+hat(k)" then find the of "(vec(a)xxvec(b))*(vec(a)xxvec(c)).

Show that the points whose position vectors are 2hat(i) + 3hat(j) - 5hat(k), 3hat(i) + hat(j) - 2hat(k) and 6hat(i) - 5hat(j) + 7hat(k) are collinear.

Forces 2hat(i)+7hat(j),2hat(i)-5hat(j)+6hat(k),-hat(i)+2hat(j)-hat(k) act at a point P whose position vector is vec(4)-3hat(j)-2hat(k). Find the vector moment of the resultant of these forces acting at P about this Point Q whose position vector is 6hat(i)+hat(j)-3hat(k)

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k),vec(c)=3hat(i)+hat(j)" then "vec(a)+tvec(b) will be perpendicular to vec(c) only when t =

The angle between the lines vec(r)=(hat(i)+2hat(j)-3hat(k))+t(2hat(i)+hat(j)-2hat(k))" and the plane "vec(r)*(hat(i)+hat(j))+4=0 is

show that the vectors 3 hat(i)- 2hat(j)+ hat(k), hat(i)-3hat(j)+5hat(k) and 2hat(i)+ hat(j)- 4 hat(k) form a right angled triangle