Home
Class 12
MATHS
Find the Cartesian form of the equation ...

Find the Cartesian form of the equation of the plane `vec(r)=(s-2t)hat(i)+(3-t)hat(j)(2s+t)hat(k)`

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS )|10 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

Find the non-parametric form of vector equation, and Cartesian equations of the plane vec(r)=(6hat(i)-hat(j)+hat(k))+s(-hat(i)+2hat(j)+hatk)+t(-5hat(j)-4hat(j)-5hat(k))

Find the parametric form of vector equation, and Cartesian equations of the plane containing the line vec(r)=(hat(i)-hat(j)+3hat(k))+t(2hat(i)-hat(j)+4hat(k))" and perpendicular to plane "vec(r)*(hat(i)+2hat(j)+hat(k))=8.

Find the acute angle between the following lines. vec(r)=(4hat(i)-hat(j))+t(hat(i)+2hat(j)-2hat(k)) vec(r)=(hat(i)-2hat(j)+4hat(k))+s(-hat(i)-2hat(j)+2hat(k))

Find the angle between the line vec(r)=(2hat(i)-hat(j)+hat(k))+t(6hat(i)+2hat(j)-2hat(k))" and the plane "vec(r)*(6hat(i)+3hat(j)+2hat(k))=8

Find the equation the plane which contain the line of intersection of the planes vec rdot( hat i+2 hat j+3 hat k)-4=0a n d vec rdot(2 hat i+ hat j- hat k)+5=0 and which is perpendicular to the plane vec r(5 hat i+3 hat j-6 hat k)+8=0 .

Find the angle between the planes vec(r)*(hat(i)+hat(j)-2hat(k))=3and2x-2y+z=2

The coordinates of the point where the line vec(r)=(6i-j-3k)+t(-i+4k)" meets the plane "vec(r)*(hat(i)+hat(j)-hat(k))=3 are

Find the parametric form of vector eqution of the straight line passing through (-1,2,1) and paralle to the straight line vec(r)=(2hat(i)+3hat(j)-hat(k))+t(hat(i)-2hat(j)+hat(k)) and lines find the shortest distance between the lines.