Home
Class 12
MATHS
Prove that [vec(a)+vec(b)+vec(c),vec(b)+...

Prove that `[vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]`

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 5 MARKS )|5 Videos
  • APPLICATIONS OF VECTORA ALGEBRA

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS ( 2 MARKS )|10 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|35 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos

Similar Questions

Explore conceptually related problems

prove that [vec(a)-vec(b),vec(b)-vec(c)vec(c)-vec(a)]=0

Let vec(a),vec(b)andvec(c) be three non-coplanar vectors and let vec(p),vec(q),vec(r) be the vectors defined by the relations vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]),vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]),vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)])" Then the value of "(vec(a)+vec(b))*vec(p)+(vec(b)+vec(c))*vec(q)+(vec(c)+vec(a))*vec(r)=

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

If vec(a),vec(b),vec(c) are the non-coplanar vectors, then (vec(a).vec(b)xxvec(c))/(vec(c)xxvec(a).vec(b))+(vec(b).vec(a)xxvec(c))/(vec(c).vec(a)xxvec(b))= ……………

If [vec(a),vec(b),vec(c)]=1, then the value of (vec(a)*(vec(b)xxvec(c)))/((vec(c)xxvec(a))*vec(a))+(vec(b)*(vec(c)xxvec(a)))/((vec(a)xxvec(b))*vec(c))+(vec(c)(vec(a)xxvec(b)))/((vec(c)xxvec(b))*vec(a)) is

For any three vectors vec(a),vec(b)andvec(c),(vec(a)+vec(b)).(vec(b)+vec(c))xx(vec(c)+vec(a)) is

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot