Home
Class 12
MATHS
If u(x,y) =x^(2)y + 3xy^(4), x = e^(t) a...

If `u(x,y) =x^(2)y + 3xy^(4), x = e^(t)` and y= sin t, find `(du)/(dx)` and evaluate it at t=0.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.7|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.8|15 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise EXERCISE 8.5|5 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

If g(x,y) = 3x^(2) - 5y + 2y^(2), x(t) =e^(t) and y(t) = cos t , then (dg)/(dt) is equal to

If u(x,y,z) =xy^(2)z^(3), x= sin t, y = cos t, z=1 + e^(2t) , find (du)/(dx) .

If w(x,y,z) =x^(2) + y^(2)+ z^(2), x=e^(t), y=e^(t) sin t and z=e^(t) cos t , find (dw)/(dt) .

If f (x,y) =x ^(2) + xy+y ^(2),x =t ,y=t ^(2) then (df )/(dt)=

Let g (x,y)=x^2-yx + sin (x+y), x (t) = e^(3t) , y(t) = t^2, t in R. Find (dg)/(dt) .

If z(x,y) =x tan^(-1)(xy), x=t^(2), y=se^(t), s, t in R , Find (del z)/(del s) and (del z)/(del t) at s=t=1.