Home
Class 12
MATHS
If u= sin^(-1)((x^(4) + y^(4))/(x^(2) + ...

If `u= sin^(-1)((x^(4) + y^(4))/(x^(2) + y^(2)))` and f= sin u then f is a homogenous function of degree _________

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise CHOOSE THE INCORRECT ANSWER|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 2 MARKS|4 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|10 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

Show that f (x,y) = (2x ^(2) -y ^(2))/sqrt(x ^(2) + y ^(2)) is a homogeneous function of degree 1.

f ( x , y ) = sin − 1 ( x y ) + tan − 1 ( y x ) is homogeneous function of degree:

f (x,y)=sin ^(-1) ((x)/(y)) + tan ^(-1) ((y)/(x)) is homogeneous function of degree:

Show that F(x,y)=(x^2+5xy-10y^2)/(3x+7y) is a homogeneous function of degree 1.

If u =tan^(-1)((x ^(4) +y ^(4))/(x ^(2)-y ^(2))) show that x (delu)/(delx) + y(del u)/(dely) = sin 2u.

If u=x/y^(2) - y/x^(2) , then

If u(x,y) =e^(x^(2) + y^(2)) , then (del u)/(del x) is equal to

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).