Home
Class 12
MATHS
If u=x/y^(2) - y/x^(2), then...

If `u=x/y^(2) - y/x^(2)`, then

A

`(del^(2)u)/(del x del y) = (del^(2)u)/(del y del x)`

B

`(del^(2)u)/(del y del x) = (del^(2) u)/(del x dely)`

C

`(del^(2) f)/(del x^(2)) = (del^(2) f)/(dy^(2))`

D

`(del^(2)u)/(del x del y) =-2/y^(3) + 2/x^(3)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 2 MARKS|4 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 3 MARKS|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise FILL IN THE BLANKS|10 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

If u=x^(y) + y^(x) , then u_(x) + u_(y) at x=y=1 is

If u = x/y^2- y/x^2 , show that (del^2u)/(delxdely)=(del^2u)/(delydelx) .

If u(x,y) =e^(x^(2) + y^(2)) , then (del u)/(del x) is equal to

If u =x ^(2) + y ^(2) evaluate (del^(2)f)/(del x ^(2)) + (del ^(2) f)/(dy ^(2)):

If u (x,y) =x ^(2) + 2xy-y ^(2) then (del u)/(del x) + (delu)/(del y) is:

If u=log sqrt(x^(2) + y^(2)) , then (del^(2) u)/(del x^(2)) + (del^(2)u)/(del y^(2)) is

If u=(x-y)^(2) , then (del u)/(del x) + (del u)/(del y) is

If u =x ^(3) +2xy^(2) -x ^(2)y show that (del^(2)u)/(delxdely) =(del^(2)u)/(delydelx).

If u=1/(sqrt(x^2+y^2)) , then x(delu)/(delx)+y(delu)/(dely) is equal to ..........