Home
Class 12
MATHS
If u=log((x^(2) + y^(2))/(xy)), then...

If `u=log((x^(2) + y^(2))/(xy))`, then

A

u is a homogenous function

B

`x(del u)/(del x) + y(del u)/(del y)=0`

C

`(x^(2) + y^(2))/(xy)` is a homogenous function

D

`(x^(2) + y^(2))/(xy)` is a homogenous function of degree 0.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 2 MARKS|4 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 3 MARKS|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise FILL IN THE BLANKS|10 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=

If u=log sqrt(x^(2) + y^(2)) , then (del^(2) u)/(del x^(2)) + (del^(2)u)/(del y^(2)) is

If z= log""(x^2 + y^2)/(x+y) then x(∂z)/(∂x)+ y(∂z)/(∂y) is :

If u (x,y) = (x ^(2))/( y)- (2y ^(2))/(x) then (del^(2) u)/(del x dely) - (del ^(2) u)/(dely delx) is :

If u(x,y) =e^(x^(2) + y^(2)) , then (del u)/(del x) is equal to

If U(x,y,z) =(x^(2) + y^(2))/(xy) + 3z^(2)y , find (del U)/(dx) + (del U)/(dy) + (del U)/(dz)

If u(x,y) = (x^(2) + y^(2))/sqrt(x+y) , prove that x(del u)/(del x) + y(del u)/(del y) = 3/2 u .

If u= tan^(-1) ((x^(3) + y^(3))/(x-y)) , Prove that x(del u)/(del x) + y(del u)/(del y) = sin 2u .