Home
Class 12
MATHS
If z=f(x-cy) + F(x+cy) where f and F are...

If z=f(x-cy) + F(x+cy) where f and F are any two functions and c is a constant, show that `c^(2) (del^(2)z)/(del x^(2)) = (del^(2)z)/(del y^(2))`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    SURA PUBLICATION|Exercise 3 MARKS|5 Videos
  • COMPLEX NUMBERS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS (5 MARKS )|6 Videos
  • DISCRETE MATHEMATICS

    SURA PUBLICATION|Exercise 5 MARKS|2 Videos

Similar Questions

Explore conceptually related problems

A function f (x,y) is said to be harmonic if (del^(2)f)/(del x ^(2)) + (del^(2)f)/(dely^(2)) =

If u =x ^(2) + y ^(2) evaluate (del^(2)f)/(del x ^(2)) + (del ^(2) f)/(dy ^(2)):

If u=log sqrt(x^(2) + y^(2)) , then (del^(2) u)/(del x^(2)) + (del^(2)u)/(del y^(2)) is

If V(x,y) = e^(x) (x cos y - y siny) , then prove that (del^(2)V)/(del x^(2)) + (del^(2) V)/(del y^(2)) =0

If u =tan^(-1)((x)/(y)) show that (del^(2)u)/(delxdely) = (del^(2)u)/(delydelx) .

If u=(x-y)^(2) , then (del u)/(del x) + (del u)/(del y) is

If u = x/y^2- y/x^2 , show that (del^2u)/(delxdely)=(del^2u)/(delydelx) .

If u =x ^(3) +2xy^(2) -x ^(2)y show that (del^(2)u)/(delxdely) =(del^(2)u)/(delydelx).

If w(x,y) = xy + sin(xy) , then prove that (del^(2) w)/(del y del x) = (del^(2) w)/(del x del y)

If f=x/(x^(2) + y^(2)) , then show that x (del f)/(del x) + y(del f)/(del y) =-f .