Home
Class 12
MATHS
The probability density function of X is...

The probability density function of X is
`f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):}`
Find
`P(0.2 le X lt 0.6)`

Text Solution

Verified by Experts

The correct Answer is:
0.16
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY DISTRIBUTIONS

    SURA PUBLICATION|Exercise EXERCISE 11.4|11 Videos
  • PROBABILITY DISTRIBUTIONS

    SURA PUBLICATION|Exercise EXERCISE 11.5|13 Videos
  • PROBABILITY DISTRIBUTIONS

    SURA PUBLICATION|Exercise EXERCISE 11.2|9 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS|24 Videos
  • THEORY OF EQUATIONS

    SURA PUBLICATION|Exercise 4 MARKS|5 Videos

Similar Questions

Explore conceptually related problems

The probability density function of X is f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):} Find P(0.5 le X lt 1.5)

The probability density function of X is f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):} Find P(1.2 le X lt 1.8)

The probability density function of X is f(x) = {(x,0 ltxlt1),(2-x, 1lt=xlt2),(0,"otherwise"):} Find (i) P(0.2 lt=X lt0.6) (ii) P(1.2lt= X lt 1.8) (iii) P(0.5 lt=X lt 1.5)

If X is the random variable with probability density function f(x) is given by f(x)={{:(x+1, -1 le x lt 0), (-x+1, 0 le x lt 1), (0,"otherwise"):} then find (i) the distribution function F(x) (ii) P(-0.5 le X le 0.5)

If x is the random variable with probability mass function given by f(x)={{:(x+1,1lexlt2),(-x+1,2lexlt3),(0 , "otherwise"):} Find P(1.1 lt x lt 25)

The probability density function of X is given by f(x)={{:(ke^(-x/3), "for " x gt 0), (0, "for " x le 0):} Find P(X lt 3)

The probability density function of X is given by f(x)={{:(kxe^(-2x), "for " x gt 0), (0, "for " x le 0):} Find the value of k.

If X is the random variable with porbability density function f(x) given by f(x)={(x-1,1lt=xlt2),(-x+3,2lt=xlt3),(0,"otherwise"):} find (i) the distribution function F(x) (ii) P (1.5lt=X lt=2.5)