Home
Class 11
MATHS
If ("log"(e)x)/(b - c) = ("log"(e) y)/(c...

If `("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b)`, show that
`x^(a)y^(b)z^(c ) `= 1

Text Solution

Verified by Experts

The correct Answer is:
`x^(a)y^(b)z^(c )` = 1 Hence proved
Promotional Banner

Topper's Solved these Questions

  • BASIC ALGEBRA

    SURA PUBLICATION|Exercise SECTION - C (3 MARKS )|5 Videos
  • BINOMIAL THEOREM, SEQUENCES AND SERIES

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS|10 Videos

Similar Questions

Explore conceptually related problems

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

The value of "log"_(a) b "log"_(b)c "log"_(c ) a is

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

int (e^(6 log x) - e ^(5 log x))/( e^(4 log x) - e^(3 log x)) dx

e ^(x log a)e^(x)

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .