Home
Class 12
MATHS
" QRG tan "^(-1)x+cot^(-1)(x+1)=tan^(-1)...

" QRG tan "^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

cot^(-1)x=tan^(-1)x then

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

cot(tan^(-1)x+cot^(-1)x)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals