Home
Class 12
MATHS
lt(x rarr1)((1)/(log x)-(1)/(x-1))...

lt_(x rarr1)((1)/(log x)-(1)/(x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

L_(x rarr1)((1)/(ln x)-(1)/(x-1))=

lim_(x rarr1)((x)/(x-1)-(1)/(log x))

lim_(x rarr1)(log x)/(x-1)=

let a=lim_(x rarr1)((x)/(ln x)-(1)/(x ln x)),b=lim_(x rarr0)((x^(3)-16x)/(4x+x^(2))),c=lim_(x rarr0)(ln(1+sin x))/(x) and d=lim_(x rarr-1)((x+1)^(3))/(3[sin(x+1)-(x+1)]) then the matrix [[a,bc,d]]

lim_(x rarr0)[(1)/(x)-(1)/(x^(2))log(1+x)]

Lt_(x rarr oo)((1)/(e)-(x)/(1+x))^(x)=

" 6."lim_(x rarr1)(log x)/(x-1)=

lim_(x rarr1)(1+log x-x)/(1-2x+x^(2))=1 b.-1 c.0 d.-1/2

Lt_(x rarr0)((15)^(x)-5^(x)-3^(x)+1)/(1-cos4x)=

lim_(x rarr0)(cot x)^((1)/(log x))