Home
Class 10
MATHS
" (ii) "cos2A=2cos^(2)A-1=1-2sin^(2)A...

" (ii) "cos2A=2cos^(2)A-1=1-2sin^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1)cos2A=2cos^(2)A-1(2)cos2A=1-2sin^(2)A

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Show that cos 2 x=cos ^(2) x-sin ^(2) x=2 cos ^(2) x-1=1-2 sin ^(2) x=(1-tan ^(2) x)/(1+tan ^(2) x)

Prove that (1)sin2A=2sin A cos A(2)cos2A=cos^(2)A-sin^(2)A

cos^(4)A-sin^(4)A is equal to 2cos^(2)A+1(b)2cos^(2)A-1(c)2sin^(2)A-1( d) 2sin^(2)A+1

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

If A=30^(@) , then prove that : cos2A=cos^(2)A-sin^(2)A " "=(1-tan^(2)A)/(1+tan^(2)A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A) (ii) (1)/(sec A-tan A)-(1)/(cos A)=(1)/(cos A)-(1)/(sec A + tan A)

Show that: sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)