Home
Class 9
MATHS
\ If\ sum(k=4)^143 1/(sqrt(k)+sqrt(k+1))...

`\ If\ sum_(k=4)^143 1/(sqrt(k)+sqrt(k+1))=a-sqrt(b)` then a and b are respectively

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(k=4)^(143) (1)/(sqrt(k)+sqrt(k+1))=a-sqrt(b) then a and b respectively are

If sqrt(80)k=sqrt(5) then k= ……..

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

log_sqrt(k) (sqrt(k sqrt(k sqrt(k sqrt(k)))))

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=

sum_(k=1)^(360)(1)/(k sqrt(k+1)+(k+1)sqrt(k)) is the ratio of two relatively prime positive integers m and n then the value of m+n is equal to

If 4sqrt(3sqrt(x^(2)))=x^(k), then k=

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to