Home
Class 12
MATHS
f(x)=cos[pi^(2)]x-cos[-pi^(2)]x...

f(x)=cos[pi^(2)]x-cos[-pi^(2)]x

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

If f(x)=cos[pi]^2x+cos[-pi^2]x ,\ w h e r e\ [x] denotes the greatest integer less than or equal to x , then write the value of f(pi)dot

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to