Home
Class 12
MATHS
The integral int(pi/4)^(5pi/4)(|cost|sin...

The integral `int_(pi/4)^(5pi/4)(|cost|sint+|sint|cost)` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(sint)/(1+t)dt=alpha , them the value of the integral int_(4pi-2)^(4pi)("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

If int_0^1(sint)/(1+t)dx=alpha, then the value of the integral int_(4pi-2)^(4pi)(sint/2)/(4pi+2-t)dti s 2alpha (2) -2alpha (3) alpha (d) -alpha

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

If int_0^1(sint)/(1+t)dt=alpha, then the value of the integral int_(4pi-2)^(4pi)(sin(t/2))/(4pi+2-t)dt is (1) 2alpha (2) -2alpha (3) alpha (4) -alpha

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(-2012pi)^(2012pi) {d/dx(int_0^(x^2) cost^2 dt} dx is

On the interval [(5pi)/(4),(4pi)/(3)] the least value of the function f(x)=int_(5x//4)^(x)(3sint+4cost)dt is

STATEMENT 1 : On the interval [(5pi)/4,(4pi)/3]dot the least value of the function f(x)=int_((5pi)/4)^x(3sint+4cost)dti s0 STATEMENT 2 : If f(x) is a decreasing function on the interval [a , b], then the least value of f(x) is f(b)dot

STATEMENT 1 : On the interval [(5pi)/4,(4pi)/3]dot the least value of the function f(x)=int_((5x)/4)^x(3sint+4cost)dti s0 STATEMENT 2 : If f(x) is a decreasing function on the interval [a , b], then the least value of f(x) is f(b)dot