Home
Class 12
MATHS
Let Sn=n/((n+1)(n+2))+n/((n+2)(n+4))+n/(...

Let `S_n=n/((n+1)(n+2))+n/((n+2)(n+4))+n/((n+3)(n+6))+..............+1/(6n)` then `Lim_(n->oo) S_n` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If U_(n)=(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))^(2).............(1+(n^(2))/(n^(2)))^(n) m then lim_(n to oo)(U_(n))^((-4)/(n^(2))) is equal to

let =(1)/(n*(n+1))+(1)/((n+1)*(n+2))+(1)/((n+2)(n+3))+... terms then lim_(n rarr oo)S_(n) is equal to

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim_(n to oo)f(n) equals

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+...+1/(6n^2)]