Home
Class 10
MATHS
[" Given "log(2)(log(8)x)=log(8)(log(2)x...

[" Given "log_(2)(log_(8)x)=log_(8)(log_(2)x)" then "(log_(2)x)^(2)" has the value equal to "],[[" (A) "9," (B) "12],[" (C) "27," (D) "3sqrt(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)(log_(8)x)=log_(8)(log_(2)x), find the value of (log_(2)x)^(2)

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

If log_(8)(log_(4)(log_(2)x))=0 then x^(-(2)/(3)) equals

If (log_(3)x)(log_(x)2x)(log_(2x)y)=log_(x)x^(2) , then what is y equal to?

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is