Home
Class 12
MATHS
17*cos(sin^(-1)(3)/(5^(1))+(6^(-1)-(3)/(...

17*cos(sin^(-1)(3)/(5^(1))+(6^(-1)-(3)/(2))=(6)/(5sqrt(13))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos(sin^(-1)((3)/(5)) +cot^(-1)((3)/(2))) =(6)/(5sqrt(13))

Prove the following results: tan((cos^(-1)4)/(5)+(tan^(-1)2)/(3))=(17)/(6)(ii)cos((sin^(-1)3)/(5)+(cot^(-1)3)/(2))=(6)/(5sqrt(13))

Directions (Q. Nos. 16-25) Prove the following "cos"["sin"^(-1)(3/(5))+"cot"^(-1)(3/(2))]=6/(5sqrt(13)) .

sin^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove The following: "cos"(sin^(-1)\ 3/5+cot^(-1)\ 3/2)=6/(5\ sqrt(13))

Prove that cos(sin^-1(3/5) + cot^-1(3/2)) = 6/(5sqrt13)

cos (sin ^ (- 1) ((3) / (5)) + cot ^ (- 1) ((3) / (2))) = (6) / (5sqrt (13))

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=