Home
Class 11
MATHS
" (4) The value of "lim(x rarr0)[(x^(2))...

" (4) The value of "lim_(x rarr0)[(x^(2))/(sin x tan x)]" (where "[*]" denotes the greatest integer function) is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(x^(2))/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

The value of lim_(x rarr0)[(x)/(sin x)] is

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

. lim_(x rarr0)(x^(2))/(sin x^(2))

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

The value of lim_(x rarr0)([(100x)/(sin x)]+[(99sin x)/(x)]) , [.] denotes the greatest integer function,is

The value of lim_(x rarr0)|x|^(sin x) equals

lim_(x rarr0)x^(2)sin(pi/x)=

lim_(x rarr0)(sin^(2)x)/(x)=

lim_(x rarr0)(x)/(sin2x)