Home
Class 11
MATHS
" (iii) "[[a+ib,c+id],[-c+id,a-ib]]," wh...

" (iii) "[[a+ib,c+id],[-c+id,a-ib]]," where "a^(2)+b^(2)+c^(2)+d^(2)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the adjoint and inverse of each of the following matrices : A = [(a+ib, c +id),(-c + id,a - ib)] where a^(2) + b^(2) + c^(2) + d^(2) = 1

If A = [(a+ib,c+id),(-c+id,a-ib)], a^(2)+b^(2)+c^(2)+d^(2) =1 , then find inverse of A.

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

Evaluate det[[a+ib,c+id-c+id,a-ib]]

Evaluate det[[a+ib,c+idc-id,a-id]]

Evaluate |(a+ib,c+id),(-c+id,a-ib)| where i=sqrt(-1)

If (a+ib)/(c+id)=x+iy, prove that(i) (a-ib)/(c-id)=(x-iy)( ii) (a^(2)+b^(2))/(c^(2)+d^(2))=(x^(2)+y^(2))

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)