Home
Class 12
MATHS
If y^x+x^y=(x+y)^(x+y) find dy/dx...

If `y^x+x^y=(x+y)^(x+y)` find `dy/dx`

Text Solution

Verified by Experts

`y^x+x^y = (x+y)^(x+y)`
Let `f(x) = y^x`
Taking log both sides,
`log(f(x)) = xlogy`
Now, differentiating it w.r.t. `x`,
`=>1/(f(x))f'(x) = x/ydy/dx+logy`
`=>f'(x) = f(x)x/ydy/dx+logy`
`=>f'(x) = y^x (x/ydy/dx+logy)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

y=a^(x+y) , find dy/dx

If x^(y) = y^(x) find (dy)/(dx)

If x^(y)=y^(x), find (dy)/(dx)

If x^y = y^x find (dy)/(dx)

x^(y)=y^(x) then find (dy)/(dx)

If y=x^(y)+(sin x)^(x) find dy/dx

y^(x) = x^(y) then find dy/dx

If x^y=y^x ,then find (dy)/(dx)

If x^y=y^x , find (dy)/(dx) .

If y= x^(x^(x)) then find (dy)/(dx)