Home
Class 12
MATHS
" 3."|[1,x+y,y],[1,x,x+y]|=...

" 3."|[1,x+y,y],[1,x,x+y]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Delta(x,y)=|(1,x,y),(1,x+y,y),(1,x,x+y)| Then Delta(-3,2) equals

If the co-ordinates of the vertices of an equilateral triangle with sides of length a are (x_1,y_1), (x_2, y_2), (x_3, y_3), then |[x_1,y_1,1],[x_2,y_2,1],[x_3,y_3,1]|=(3a^4)/4

If A(x_1, y_1), B (x_2, y_2) and C (x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the internal bisector of angle A , then prove that : b|(x,y,1),(x_1, y_1, 1), (x_2, y_2, 1)|+c|(x, y,1), (x_1, y_1, 1), (x_3, y_3, 1)|=0 where AC = b and AB=c .

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

If [[x,1],[-1,-y]]+[[y,1],[3,x]]=[[1,2],[2,1]] , then (x,y) =

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4