Home
Class 12
MATHS
Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b...

Show that `|[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)`

Text Solution

Verified by Experts

`L.H.S. = |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|`
`= (abc)|[1,1,1],[a,b,c],[a^2,b^2,c^2]|`
Applying `C_1->C_1-C_3 and C_2->C_2-C_3`
`= (abc)|[0,0,1],[a-b,b-c,c],[a^2-b^2,b^2-c^2,c^2]|`
`= (abc)(a-b)(b-c)|[0,0,1],[1,1,c],[a+b,b+c,c^2]|`
`= (abc)(a-b)(b-c)[b+c-a-b]`
`= (abc)(a-b)(b-c)(c-a) = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

Show that |{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(2),b^(3),c^(3)):}|=abc(a-b)(b-c)(c-a)

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that the following. [[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]] = abc(a-b)(b-c)(c-a)

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Show that |[b+c,c+a,a+b] , [a+b,b+c,c+a] , [a,b,c]|=a^3+b^3+c^3-3abc

Show that: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3