Home
Class 12
MATHS
lim(x rarr oo)[sqrt(x^(2)+2x-1)-x]=...

lim_(x rarr oo)[sqrt(x^(2)+2x-1)-x]=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

Show that lim_(x rarr oo){sqrt(x^(2)+x)-x}=(1)/(2)

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

lim_(x rarr oo)(sqrt(x^(2)+1)-(x^(2)+1)^((1)/(3)))/((x^(4)+1)^((1)/(4))-(x^(4)-1)^((1)/(5))) is equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^2+1))

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))