Home
Class 12
MATHS
int0^(pi/4)sqrt(tanx)dx...

`int_0^(pi/4)sqrt(tanx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is (a) sqrt(2)pi (b) pi/(sqrt(2)) (c) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

Evaluate the definite integral: int_0^(pi/4)(tanx)dx

Evaluate the definite integrals int_0^(pi/4)(tanx)dx

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals