Home
Class 12
MATHS
Let [x] be the greatest integer function...

Let [x] be the greatest integer function `f(x)=(sin(1/4(pi[x]))/([x]))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = sin"" (pi x)/(4) + sin""(pi x)/(3)

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

Let [] donots the greatest integer function and f (x)= [tan ^(2) x], then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is