Home
Class 12
MATHS
Let In = int0^(npi) sinx/(1+x) dx n = 1,...

Let `I_n = int_0^(npi) sinx/(1+x) dx` n = 1,2,3,4. Arrange `I_1 , I_2, I_3,I_4` in increasing order of magnitude.

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int_(0)^(n) ( 1- sin 2nx)/( 1-cos 2n)dx then I_(1) , I_(2) , I_(3),"........" are in :

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

Let I_(n)=int_(1)^(e)(ln x)^(n)dx,n in N Statement II_(1),I_(2),I_(3) is an increasing sequence.Statement II In x is an increasing function.