Home
Class 12
MATHS
[A+B+C=pi,|sin^(2)A sin A cos A cos^(2)A...

[A+B+C=pi,|sin^(2)A sin A cos A cos^(2)A],[sin^(2)D,sin B cos B],[sin^(2)C,cos(2 pi)^(2)B],[,=sin(A-B)sin(B-C)sin(1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C = pi , show that |["sin"^(2)A, "sin A cos A", "cos"^(2)A],["sin"^(2) B, "sin B cos B", "cos"^(2)B],["sin"^(2)C, "sin C cos C", "cos"^(2)C]| =-"sin (A-B)"sin"(B-C)"sin"(C-A)"

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A-B=(2n+1)(pi)/(2) , n in Z ,then [[cos^(2)A,cos A sin A],[cos A sin A,sin^(2)A]][[cos^(2)B,cos B sin B],[cos B sin B,sin^(2)B]]=

(2sin (AC) cos C-sin (A-2C)) / (2sin (BC) cos C-sin (B-2C)) = (sin A) / (sin B)

(2sin (AC) cos C-sin (A-2C)) / (2sin (BC) cos C-sin (B-2C)) = (sin A) / (sin B)

If A+B+ C =pi , then prove that cos ^(2) (A/2)+ cos ^(2) (B/2) +cos ^(2) (C/2)=2(1+sin . (A)/(2) sin. (B)/(2) sin. (C)/(2))

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.