Home
Class 10
MATHS
(x^(2)-2ax+a^(2)-b^(2)=0)/(x^(2))...

(x^(2)-2ax+a^(2)-b^(2)=0)/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following quadratic equation by factorization method: ( ) x^(2)-2ax+a^(2)-b^(2)=0(ii)x^(2)-4ax+4a^(2)-b^(2)=0(iii)4x^(2)-4ax+(a^(2)-b^(2))=0(iv)4x^(2)-4a^(2)x+(a^(4)-b^(4))=

36x^(2)-12ax+(a^(2)-b^(2))=0

x^(2)-2ax-(4b^(2)-a^(2))=0

Solve 4x^(2)-4ax+(a^(2)-b^(2))=0.

If a circle passes through the point (a, b) and cuts the circle x^2 + y^2 = 4 orthogonally, then the locus of its centre is (a) 2ax+2by-(a^(2)+b^(2)+4)=0 (b) 2ax+2by-(a^(2)-b^(2)+k^(2))=0 (c) x^(2)+y^(2)-3ax-4by+(a^(2)+b^(2)-k^(2))=0 (d) x^(2)+y^(2)-2ax-3by+(a^(2)-b^(2)-k^(2))=0

int (ax^(2)-b)(dx)/(x sqrt(c^(2))x^(2) -(ax^(2) + b^(2))^(2)

The locus of the midpoints of the chords of the circle x^(2)+y^(2)-ax-by=0 which subtend a right angle at ((a)/(2),(b)/(2)) is ax+by=0ax+by=a^(2)=b^(2)x^(2)+y^(2)-ax-by+(a^(2)+b^(2))/(8)=0x^(2)+y^(2)-ax-by-(a^(2)+b^(2))/(8)=0

Which of the following pair(s) of curves is/are orthogonal? y^(2)=4ax;y=e^(-(1)/(2))y^(2)=4ax;x^(2)=4ayat(0,0)xy=a^(2);x^(2)-y^(2)=b^(2)y=ax;x^(2)+y^(2)=c^(2)

The roots of the equation x^(2)+2ax+a^(2)+b^(2)=0 are

The roots of the equation x^(2)+2ax+a^(2)+b^(2)=0 are