Home
Class 11
MATHS
(e^(x)-e^(-9))/(e^(x)+e^(-9))...

(e^(x)-e^(-9))/(e^(x)+e^(-9))

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate 1. (e^(x)-e^(-x))/(e^(x)+e^(-x)) 2. (10x^(9)+10^(x).log_(e)10)/(10^(x)+x^(10))

Integrate the functions (e^(x)-e^(-x))/(e^(x)+e^(-x))

(e^(x)-e^(-x))/(e^(x)+e^(-x))

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))

If y = (e^(x)+e^(-x))/(e^(x)-e^(-x)) then is equal to...

If int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A ln |(e^(x)+e^(-x)+B)/(e^(x)+e^(-x)-B)|+c then AB=

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

The value of int ((e^(x)-e^(-x))dx)/((e^(x)+e^(-x))log(e^(x)+e^(-x))) is equal to -