Home
Class 11
MATHS
2^(|x+1|)-2^x=|2^x-1|+1...

`2^(|x+1|)-2^x=|2^x-1|+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the equation: 2^(x+1)-2^(x)=|2^(x)-1|+1 The least value of x satisfying is a.0 b.2 c.4 d.None of these

The least value of x satisfying the equation 2^(2)x+1|-2^(x)=|2^(x)-1|+1 is 0(b)2(c)4(d) none of these

2^(|x+2|)-|2^(x+1)-1|=2^(x+1)+1

Solve the equation 2^(|x+2|)-|2^(x+1)-1|=2^(x+1)+1

If ^( If )(2^(x)-1)+2^(x-1)(2^(x-1)-1)+2^(x-2)(2^(x-2)-1)+.........2^(x-99)(2^(x-99)-1)=0, then find the value of x-99.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.

Let f(x) be a function defined as f(x)={(x^2-1)/(x^2-2|x-1|-1),x!=1 1/2,x=1 Discuss the continuity of the function at x=1.