Home
Class 12
MATHS
the value of logx+log(1+1/(1+x))+log(1+1...

the value of `logx+log(1+1/(1+x))+log(1+1/(2+x))+.................+log(1+1/(n-1+x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

for 0

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

The value of int_(-1)^(1) log ((x-1)/(x+1))dx is

Solve for x if log(x-1)+log(x+1)=log1

2log x-log(x+1)-log(x-1)=

(1)/(logx)-(1)/((log x)^(2))