Home
Class 11
MATHS
Let complex numbers alpha and 1/alpha li...

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3`

Text Solution

Verified by Experts

`|alpha-Z_0|=r-(1)`
`|1/alpha-Z_0|=2r`
`z|z_0|^2=r^2+2-(3)`
`|alpha/|alpha|^2-Z_0|=2r-(2)`
`alpha*overlinealpha=|alpha|^2`
`1/overlinealpha=alpha/|alpha|^2`
squaring equation 1
`|alpha|^2+|Z_0|^2-(alphaoverlineZ_0+overlinealphaZ_0)=r^2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let complex numbers alpha and 1/alpha^- lie on circles (x-x_0)^2+(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2 respectively if z_0=x_0+iy_0 satisfies the equation 2absz_0^2=r^2+2 then absalpha=

Let complex numbers alphaand (1)/(alpha) lie on circles (x-x_(0))^(2)+(y-y_(0))^(2)=r^(2)and(x-x_(0))^(2)+(y-y_(0))^(2)=4r^(2) respectively . If z_(0)=x_(0)+iy_(0) satisfies the equation 2|z_(0)|^(2)=r^(2)+2 " then "|alpha| =

Let complex numbers alpha " and " (1)/(bar alpha) lies on circles (x - x_(0))^(2) + (y- y_(0))^(2) = r^(2) and (x - x_(0))^(2) + (y - y_(0))^(2) = 4x^(2) , , respectively. If z_(0) = x_(0) + iy_(0) satisfies the equation 2 | z_(0) |^(2) = r^(2) + 2 , then |alpha| is equal to:

If the circles x^2+y^2-9=0 and x^2+y^2+2alpha x+2y+1=0 touch each other, then alpha is (a) -4/3 (b) 0 (c) 1 (d) 4/3

If (x^2+y^2)dy=xydx and y(1)=1 . If y(x_0)=e then x_0 is equal to (A) sqrt(2)e (B) sqrt(3)e (C) 2e (D) e

The plane x+2y-z=4 cuts the sphere x^2+y^2+z^2-x+z-2=0 in a circle of radius (A) sqrt(2) (B) 2 (C) 1 (D) 3

Let alpha_1,alpha_2a n d\ beta_1,beta_2 be the roots of a x^2+c=0\ a n d\ p x^2+q x+r=0 respectively. If the system of equations alpha_1, y+alpha_2z=0\ a n d\ beta_1y+beta_2z=0 has anon-trivial solution, then prove that (b^2)/(q^2)=(a c)/(p r)dot

If the distance of line 2x-y+3=0 from 4x-2y+p=0 and 6x-3y+r=0 is respectively 1/sqrt(5) and 2/sqrt(5)