Home
Class 12
MATHS
If f(x)=ax^2+bx+c and g(x)+px^2+qx with ...

If `f(x)=ax^2+bx+c` and `g(x)+px^2+qx` with `g(1)=f(1)` `g(2)-f(2)=1` `g(3)-f(3)=4` then `g(4)-f(4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax^2+bx+c and g(x)=px^2+qx with g(1)=f(1) , g(2)-f(2)=1 and g(3)-f(3)=4 then g(4)-f(4) is

Let f(x) = ax^(2)+bx+c , g(x) =px^(2)+qx+r , such that f(1)=g(1),f(2)=g(2) and f(3)-g(3)=2. then f(4)-g(4) is -

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If f and g are real functions defined by "f(x)=2x-1" and g(x)=x^(2) then (A) (3f-2g)(1)=1 (B) (fg)(2)=10 (C) g^(3)(2)=128 (D) ((sqrt(f))/(g))(2)=(sqrt(3))/(2)

If f^(1)(x) =g(x) and g^(1)(x) =-f (x) for all x and f(2) = 4 =f^(1) (2) then f^(2) (4) +g^(2)(4) is

If g(x)=3x-1 and f(x)=4g(x)+3 . What is f(2)?

If f(g(x)) = x and g(f(x)) = x then g(x) is the inverse of f(x) . (g'(x))f'(x) = 1 implies g'(f(x))=1/(f'(x)) Let us consider a real value bijective function g(x) sun that g'(x) = sin^2 (x+pi/4) +2 cos (x -pi/4) and g(pi/4) =3 then value of (g^(-1))(3) is

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)