Home
Class 11
MATHS
|x-1|^((log(3)x^(2)-2log(x)9))=(x-1)^(7)...

|x-1|^((log_(3)x^(2)-2log_(x)9))=(x-1)^(7)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying abs(x-1)^(log_3 x^2-2log_x 9)=(x-1)^7 is

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "

log_(x)(9x^(2))*log_(3)^(2)(x)=4

log_(2)(x+1)-log_(2)(3x-1)=2

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

(1)/(log_(3)(x+1))<(1)/(2log_(9)sqrt(x^(2)+6x+9))

If log_(2)(x^(2)+1)+log_(13)(x^(2)+1)=log_(2)(x^(2)+1)log_(13)(x^(2)+1)*(x!=0) then log_(7)(x^(2)+24) is equal to

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2