Home
Class 11
MATHS
lim(n->oo) (1^2+2^2...+n^2)/n^3...

`lim_(n->oo) (1^2+2^2...+n^2)/n^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(n to oo) (1^2+2^2+ ... +n^2)/n^3 =

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

(lim)_(n->oo)(1^2+2^2+3^2++n^2)/(n^3) is equal to a. 1 b . c. 1/3 d. 0

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3