Home
Class 11
MATHS
If A+B+C=pi, prove that sin^2A+sin^2B+si...

If `A+B+C=pi`, prove that `sin^2A+sin^2B+sin^2C= 2(1 +cos A cos B cosC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A+B+C=pi, prove that sin^(2)A-sin^(2)B+sin^(2)C=2sinA cos B sinC

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C