Home
Class 12
MATHS
If the function f(x)=2x^2 -kx+5 is stric...

If the function `f(x)=2x^2 -kx+5` is strictly increasing in [1,2], then 'k' lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) = x^(2) - ax + 5 is strictly increasing on (1,2) , then a lies in the interval

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

If the function f(x)=2x^2-kx+5 is increasing on [1,2], then k lies in the interval

If the function f(x) =2x^2-kx+5 is increasing on [1,2] then k lies in the interval

The function f(x)=x^(2)+2x-5 is strictly increasing in the interval

The function f(x)= x^2+2x+5 is strictly increasing in the interval

The function f(x) = x^(2) + 2x - 5 is strictly increasing in the interval

The function f(x) = x^(2) - 2 x is strictly decreasing in the interval