Home
Class 12
MATHS
If f(x) is defined on [-2, 2] by f(x) = ...

If f(x) is defined on `[-2, 2]` by `f(x) = 4x^2 – 3x + 1 and g(x) = (f(-x)-f(x))/(x^2+3)` then `int_(-2)^2 g(x) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is defined on [2,2] by f(x) = 4x^2-3x+1 and g(x) = (f(-x)-f(x))/(x^2+3) then int_(-2)^2g(x) dx is equal to

If f (x) is defined [-2, 2] by f(x)=4x^(2)-3x+1 and g(x)=(f(-x)-f(x))/((x^(2)+3)) , then int_(-2)^(2)g(x)dx=

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

Let f(x) = 3/( 3x^2 - 9) and g(x)= x^2/( 3x^2 - 9) int (g(x) - f(x)) dx is equal to ?

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If f(x) = sqrt(4x^(2)+4x-3) then int(x+3)/(f(x))dx is equal

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to