Home
Class 12
MATHS
lf [.] denotes the greatest integer func...

lf [.] denotes the greatest integer function and {.} denotes the fractional part, then the domain of the function `f(x) = sqrt((x-1)/(x-{x})) + ln(3 - [x+[2x]])` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

If [1 denotes the greatest integer and {} denotes the fractional part,then the domain of the real valued function f(x)=(f(x))/(sqrt(1000x^(2)-999(x)^(3)-990(x)^(2)-50x+60)) is

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is