Home
Class 12
PHYSICS
The xz plane separates two media A and B...

The `xz` plane separates two media `A` and `B` with refractive indices `mu_(1)` & `mu_(2)` respectively. A ray of light travels from `A` to `B`. Its directions in the two media are given by the unut vectors, `vec(r)_(A)=a hat i+ b hat j` & `vec(r)_(B) alpha hat i + beta hat j` respectively where `hat i` & `hat j` are unit vectors in the `x` & `y` directions. Then :

A

`mu_(1)=mu_(2)alpha`

B

`mu_(1)alpha=mu_(2)a`

C

`mu_(1)b=mu_(2)beta`

D

`mu_(1)beta=mu_(2)b`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PRACTICE WORKSHEET 1

    D MUKHERJEE|Exercise Assertion- Reason Type|3 Videos
  • PRACTICE WORKSHEET 1

    D MUKHERJEE|Exercise Linked- Comprehension Type|3 Videos
  • OPTICS

    D MUKHERJEE|Exercise All Questions|47 Videos
  • PRACTICE WORKSHEET 2

    D MUKHERJEE|Exercise Linked- Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The x-z plane separates two media A and B of refractive indices mu_(1) = 1.5 and mu_(2) = 2 . A ray of light travels from A to B. Its directions in the two media are given by unit vectors u_(1) = a hat(i)+b hat(j) and u_(2) = c hat(i) +a hat(j) . Then

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If vec a=hat i+hat j,vec b=hat j+hat k,vec c=hat k+hat i find the unit vector in the direction of vec a+vec b+vec c

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If vec a=hat i+hat j and vec b=4hat i-hat j ,find a unit vector in the direction of the vector (2vec a-vec b)

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find a unit vector parallel to the resultant of vectors vec A = 3 hat I + 3 hat j - 2 hat k and vec B= hat i- 5 hat j + hat k .

Find the unit vector in the direction of the vector : vec(b)=2hat(i)+hat(j)+2hat(k)

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k