Home
Class 12
CHEMISTRY
Two consecutive irreversible fierst orde...

Two consecutive irreversible fierst order reactions can be represented by
`Aoverset(k_(1))(rarr)Boverset(k_(2))(rarr)C`
The rate equation for A is readily interated to obtain
`[A]_(t)=[A]_(0).e^(-k_(1^(t)))` , and `[B]_(t)=(k_(1)[A]_(0))/(k_(2)-k_(1))[e^(-k_(1)^(t))-e^(-k_(2)^(t))]`
Select the corret statement for given reaction:

A

A decreases linearly

B

B rise to a max. and then constant

C

B rises to a max and the falls

D

The slowest rate of increases of C occuring where B is max

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL KINETIC & NUCLEAR CHEMISTRY

    NARENDRA AWASTHI|Exercise Level 1 (Q.3 To Q.32)|2 Videos
  • CHEMICAL KINETIC & NUCLEAR CHEMISTRY

    NARENDRA AWASTHI|Exercise Level 1 (Q.33 To Q.62)|3 Videos
  • SURFACE CHEMISTRY

    NARENDRA AWASTHI|Exercise Level 3 - Assertion - Reason Type Questions|1 Videos

Similar Questions

Explore conceptually related problems

Two consecutive irreversible fierst order reactions can be represented by Aoverset(k_(1))(rarr)Boverset(k_(2))(rarr)C The rate equation for A is readily interated to obtain [A]_(t)=[A]_(0).e^(-k_(1^(t))) , and [B]_(t)=(k_(1)[A]_(0))/(k_(2)-k_(1))[e^(-k_(1)^(t))-e^(-k_(2)^(t))] At what time will B be present in maximum concentration ?

Two consecutive irreversible fierst order reactions can be represented by Aoverset(k_(1))(rarr)Boverset(k_(2))(rarr)C The rate equation for A is readily interated to obtain [A]_(t)=[A]_(0).e^(-k_(1^(t))) , and [B]_(t)=(k_(1)[A]_(0))/(k_(2)-k_(1))[e^(-k_(1)^(t))-e^(-k_(2)^(t))] When k_(1)=1s^(-1) and k_(2)=500s^(-1) , select most appropriate graph

A consecutive reaction, A overset(K_(1))(rarr)B overset(K_(2))(rarr)C is characterised by:

For the consecutive unimolecular first order reaction A overset(k_(1))rarr R overset(k_(2))rarr S , the concentration of component A , C_(A) at any time t is given by

Mechanism of the reaction is: A overset(k_(1))rarrB, 2Aoverset(k_(2))rarr C + D What is (-d[A])/(dt) ?

For the consecutive unimolecular-type first-order reaction A overset(k_(1))rarr R overset(k_(2))rarr S , the concentration of component R, C_( R) at any time t is given by - C_(R ) = C_(OA)K_(1)[e^(-k_(1)t)/((k_(2)-k_(1))) +e^(-k_(2)t)/((k_(1)-k_(2)))] if C_(A) = C_(AO), C_(R ) = C_(RO) = 0 at t = 0 The time at which the maximum concentration of R occurs is -

For the two parallel reactions A overset(k_(1)) rarr B and A overset(k_(2)) rarr C , show that the activation energy E' for the disappearance of A is given in terms of activation energies E_(1) and E_(2) for the two paths by E' =(k_(1)E_(1)+k_(2)K_(2))/(k_(1)+k_(2))