Home
Class 12
MATHS
tan^(-1)(1)/(2)+tan(1)/(3)" value is "...

tan^(-1)(1)/(2)+tan(1)/(3)" value is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of "tan"^(-1)(1)/(2)+"tan"^(-1)(1)/(3)+"tan"^(-1)(7)/(8) is

The value of (tan^(-1) ((1)/(2)) + tan^(-1) ((1)/(3)))=

general solution of sec theta=(tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3))/(tan^(-1)1+tan^(-1)((1)/(2))+tan^(-1)((1)/(3))) is theta=

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

3tan ^(-1) ""(1)/(2+sqrt(3))-tan ^(-1)""(1)/(2)=tan^(-1 )""(1)/(3)

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))