Home
Class 11
MATHS
Show that ln(4xx12xx36xx108... upto n te...

Show that `ln(4xx12xx36xx108...` upto `n` terms) = `2nln2+(n(n-1))/2 ln3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ln(4xx12xx36xx108... upto n terms )=2n ln2+(n(n-1))/(2)ln3

If (1 + 2 + 3 + 4 + 5 +………..upto n terms) / ( 1xx2 + 2xx3 + 3xx4 + 4xx5 + …. upto n terms) = 3/22 Find the value of n

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

Find 2 xx 6 + 4 xx 9 + 6 xx 12 + …… upto n terms.

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N

If (1xx3 + 2xx5 + 3xx7 + ….. upto n terms) / ( 1^3 + 2^3 + 3^3 + …… upto n terms) = 5/9, find the value of n.

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )