Home
Class 9
MATHS
7/(343)^(-2/3)+1/(216)^(-2/3)+3/(625)^(-...

`7/(343)^(-2/3)+1/(216)^(-2/3)+3/(625)^(-1/4)`

Text Solution

Verified by Experts

`7/(343)^(-2/3)+1/(216)^(-2/3) +3/(625)^(-1/4)`
`=7/(7^3)^(-2/3)+1/(6^3)^(-2/3) +3/(5^4)^(-1/4)`
`=7/(7^-2)+1/(6^-2) +3/(5^-1)`
`=7(7^2)+1(6^2) +3(5^1)`
`= 343+36+15 = 394`
`:. 7/(343)^(-2/3)+1/(216)^(-2/3) +3/(625)^(-1/4) = 394`
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

Simplify: 1/(27)^(-1/3)+1/(625)^(-1/4)

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Find the value of 4/(216)^(2/3)+1/(256)^(3/4)+2/(243)^(-2/5)

Simplify sqrt(25)/(64)^(1/3)+(256/625)^(-1/4)+1/(64/125)^(2/3)

Find the value of (9^(3//2)-3xx5^(0)-[(1)/(81)]^(-1//2))/(((64)/(125))^(-2//3)+(1)/(((256)/(625))^(1//4))+((sqrt(25))/(root(3)(64)))) .

(1)/((27)^(-(1)/(3)))+(1)/((625)^(-(1)/(4)))

((1)/(343))^(-(2)/(3))

Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))