Home
Class 12
MATHS
lim(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]...

`lim_(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]/x` a) `1/(m2^m)-1/(n2^n)` b) `1/(m2^(m-1))-1/(n2^(n-1))` c) `m/2^(m-1)-n/2^(n-1)` d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xto0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/x is equal t o (a) 2 (1/(m2^m)-1/(n2^n))' (b) (1/(m2^m)+1/(n2^n)) (c) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

("lim")_(xvec 0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto 1/(m2^m)-1/(n2^n) (b) 1/(m2^m)+1/(n2^n) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

lim_(x rarr0)((2^(m)+x)^((1)/(m))-(2^(n)+x)^((1)/(n)))/(x) is equal to (1)/(m2^(m))-(1)/(n2^(n)) (b) (1)/(m2^(m))+(1)/(n2^(n))(1)/(m2^(-m))-(1)/(n2^(-n))( d) (1)/(m2^(-m))+(1)/(n2^(-n))

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If x^(n)=a^(m)cos^(4)theta and y^(n)=b^(m)sin^(4)theta then (i)(x^((n)/(2)))/((m)/(2))+(y^((n)/(2)))/(b^((m)/(2)))=1(ii)(x^(n))/(a^(m))+(y^(n))/(b^(m))=1( iii) (x^((n)/(2)))/(y^((n)/(2)))+(a^((m)/(2)))/(y^((m)/(2)))=1 (iv) None of these

Let I_(m","n)= int sin^(n)x cos^(m)x dx . Then , we can relate I_(n ","m) with each of the following : (i) I_(n-2","m) " " (ii) I_(n+2","m) (iii) I_(n","m-2) " " (iv) I_(n","m+2) (v) I_(n-2","m+2)" " I_(n+2","m-2) Suppose we want to establish a relation between I_(n","m) and I_(n","m-2) , then we get P(x)=sin^(n+1)x cos^(m-1)x ...(i) In I_(n","m) and I_(n","m-2) the exponent of cos x in m and m-2 respectively, the minimum of the two is m - 2, adding 1 to the minimum we get m-2+1=m-1 . Now, choose the exponent of sin x for m - 1 of cos x in P(x). Similarly, choose the exponent of sin x for P(x)=(nH)sin^(n)x cos^(m)x-(m-1)sin^(n+2) x cos^(m-2)x . Now, differentiating both the sides of Eq. (i), we get =(n+1)sin^(n)x cos^(m)x-(m-1)sin^(n)x(1-cos^(2)x)cos^(m-2)x =(n+1)sin^(n)x cos^(m)x-(m-1)sin^(n)x cos^(m-2)x+(m-1)sin^(n)x cos^(n)x =(n+m)sin^(n)x cos^(m)x-(m-1)sin^(n)x cos^(m-2)x Now, integrating both the sides, we get sin^(n+1)x cos^(m-1)x=(n+m)I_(n","m)-(m-1)I_(n","m-2) Similarly, we can establish the other relations. The relation between I_(4","2) and I_(2","2) is

If m>1,n in N show that 1^(m)+2^(m)+2^(2m)+2^(3m)++2^(nm-m)>n^(1-m)(2^(n)-1)^(m)