Home
Class 12
MATHS
" Find "x" if "3^(log(2)x)+3*x^(log(2)3)...

" Find "x" if "3^(log_(2)x)+3*x^(log_(2)3)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if 3^(log_(a)x)+3.x^(log_(a)3)=2

log_(2)(3-x)+log_(2)(1-x)=3

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

Find the product of all real values of x satisfying the equation |3^(log_(3)^(2)x)-9|-2*x^(log_(3)x)=0

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

find the solution set of the inequality log_(2x+3)x^(2)

the equation of log_(2)(3-x)+log_(2)(1-x)=3

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

If 2^((log_(2)3)^(x))=3^((log_(3)2)^(x)) then the value of x is equal to